Solar Orbiter Exploring the Sun-heliosphere connection

Nicolas Labrosse School of Physics & Astronomy University of Glasgow

With thanks to Daniel Mueller (ESA) and the Solar Orbiter team

Solar corona, wind and magnetic activity: an intimate connection to form a dynamic heliosphere

Why study the Sun-heliosphere connection?

- Addresses some fundamental questions:
 - "How does the solar system work?"
 - "What are the fundamental physical laws of the Universe?"
- Study plasma phenomena which occur throughout the Universe
 - Shocks, particle acceleration, magnetic reconnection, turbulence, etc.
- Solar wind and energetic particles directly affect life on Earth
- Impact on space and ground-based assets

Facing the Sun

soho

bepicolombo

Exploring Mercury

UENUS EXPRESS Studying Venus' atmosphere

proba-2

Observing coronal dynamics and solar eruptions

uice

Characterising the conditions of ocean-bearing moons around Jupiter

cassini-huygens

Studying the Saturnian system and landing on Titan

mars express Investigating the Red Planet

cluster Measuring Earth's magnetic shield

Solar orbiter The Sun up close

ww.esa.int

ESA'S FLEET IN THE SOLAR SYSTEM

The Solar System is a natural laboratory that allows scientists to explore the nature of the Sun, the planets and their moons, as well as comets and asteroids. ESA's missions have transformed our view of the celestial neighbourhood, visiting Mars, Venus, and Saturn's moon Titan, and providing new insight into how the Sun interacts with Earth and its neighbours. The Solar System is the result of 4.6 billion years of formation and evolution. Studying how it appears now allows us to unlock the mysteries of its past and to predict how the various bodies will change in the future.

rosetta Chasing a comet

How does the Sun create and control the Heliosphere – and why does solar activity change with time ?

How does the Sun create and control the Heliosphere – and why does solar activity change with time ?

How does the Sun create and control the Heliosphere?

- Q1) How and where do the solar wind plasma and magnetic field originate in the corona?
- Q2) How do solar transients drive heliospheric variability?
- Q3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?
- Q4) How does the solar dynamo work and drive connections between the Sun and the heliosphere?

How does the Sun create and control the Heliosphere?

- Q1) How and where do the solar wind plasma and magnetic field originate in the corona?
- Q2) How do solar transients drive heliospheric variability?
- Q3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?
- Q4) How does the solar dynamo work and drive connections between the Sun and the heliosphere?

Linking in-situ and remote-sensing observations

- Correlation between
 remote-sensing and in-situ
 composition measurements
 is fundamental
 - Heavy ion charge states and composition
 - Magnetic polarity
 - Energetic particles

What are the source regions of the solar wind and heliospheric magnetic field?

Tu, Zhou, Marsch et al., Science 2005

Disentangling Space/Time Structures

- ...requires viewing a given region for more than an active region growth time (~ 10 days)
- Multiple sources of slow solar wind

 active regions are one source.

 Identifying the source directly in the wind
 by the time it gets to 1 AU is extremely
 challenging and can only be done on a
 statistical basis.

Understanding the detailed physical processes can only be achieved by getting closer.

How does the Sun create and control the Heliosphere?

- Q1) How and where do the solar wind plasma and magnetic field originate in the corona?
- Q2) How do solar transients drive heliospheric variability?
- Q3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?
- Q4) How does the solar dynamo work and drive connections between the Sun and the heliosphere?

How do coronal mass ejections (CMEs) evolve through the corona and inner heliosphere?

How does the Sun create and control the Heliosphere?

- Q1) How and where do the solar wind plasma and magnetic field originate in the corona?
- Q2) How do solar transients drive heliospheric variability?
- Q3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?
- Q4) How does the solar dynamo work and drive connections between the Sun and the heliosphere?

How and where are energetic particles accelerated?

How does the Sun create and control the Heliosphere?

- Q1) How and where do the solar wind plasma and magnetic field originate in the corona?
- Q2) How do solar transients drive heliospheric variability?
- Q3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?
- Q4) How does the solar dynamo work and drive connections between the Sun and the heliosphere?

How is magnetic flux transported to and reprocessed at high solar latitude?

Solar Orbiter will use local helioseismology to determine the currently 19 unknown properties of the solar interior below the poles.

Solar Orbiter

Solar Orbiter – The mission to understand how the Sun creates and controls the Heliosphere

The Mission

- Combines remote sensing and in-situ experiments.
- Dedicated payload of 10 selected remote-sensing and in-situ instruments measuring from the photosphere into the solar wind.

What is required?

- Close to the Sun
- Out of the ecliptic
- Long duration observations of the same region
- Remote measurements of the Sun and corona
- In situ measurements of fields and particles
- It is this unique combination provided by Solar Orbiter that makes it possible to address the question of how the Sun creates and controls the heliosphere

Payload

In situ instruments				
SWA	Solar wind analyser	Chris Owen, UK	Sampling protons, electrons and heavy ions in the solar wind	
EPD	Energetic particle detector	Javier Rodriguez- Pacheco, Spain	Measuring timing and distribution functions of accelerated energetic particles	
MAG	Magnetometer	Tim Horbury, UK	High-precision measurements of the heliospheric magnetic field	
RPW	Radio and plasma wave analyser	Milan Maksimovic, France	Studying local electromagnetic and electrostatic waves and solar radio bursts	

Payload

Remote sensing instruments

PHI	Polarimetric and heliospheric imager	Sami Solanki, Germany	Full-disc and high-resolution visible light imaging of the Sun
EUI	Extreme ultraviolet imager	Pierre Rochus, Belgium	Studying fine-scale processes and large-scale eruptions
STIX	Spectrometer/telescope for imaging X-rays	Arnold Benz, Switzerland	Studying hot plasmas and accelerated electrons
METIS	Multi-element telescope for imaging and spectroscopy	Ester Antonucci, Italy	High-resolution UV and extreme UV coronagraphy
SoloHI	Solar Orbiter heliospheric imager	Russ Howard, US	Observing light scattered by the solar wind over a wide field of view
SPICE	Spectral imaging of the coronal environment	Facility instrument, ESA provided	Spectroscopy on the solar disc and corona

Remote-sensing Instruments

In-situ Instruments

EPD-EPT/HET SWA-PAS **EPD-SIS** ERD-EPT/HET EPD-LET SWA-HIS

In-situ Boom-mounted Instruments

RPW-ANT LGA MAGIBS **RPW-SCM** MAGOBS EPD-STE ~ **RPW-ANT** SWA-EAS **RPW-ANT**

Spacecraft Temperatures

Gravity Assist Manoeuvres for a complex orbit

Observation Modes

High-latitude Observations

Perihelion Observations

High-latitude Cobservations

Science windows: Orbit: 150-168 days In situ instruments on at all times Three science "windows" of 10 days each All remote sensing instruments operationa Observing strategies based on science targets

Active regions, coronal hole boundaries, flares, high speed wind, polar structures

Autonomous burst mode triggers for unpredictable events

Telemetry and mass memory tailored to return planned instrument data volumes

High-latitude Observations

Perihelion Observations

High-latitude Cobservations

Launch Date: January 2017 Cruise Phase: 3 years Nominal Mission: 3.5 years Extended Mission: 2.5 years Orbit: 0.28 – 0.30 AU (perihelion) 0.75 - 1.2 AU (aphelion) Out-of-Ecliptic View: Multiple gravity assists with Venus to increase inclination out of the ecliptic to >25°

Summary

(nominal mission), >33° (extended mission)

Reduced relative rotation: Observations of evolving stractures on the solar surface & heliosphere for almost a complete solar rotation

Solar Orbiter and the Glasgow A&A group

- Co-Investigators on three of Solar Orbiter's instruments
 - STIX: Spectrometer/ telescope for imaging X-rays
 - EUI: Extreme Ultraviolet Imager
 - RPW: Radio and Plasma Wave analyser

A&A Group on a trip to the Sun

Posted on December 14, 2011 by Iain Hannah The European Space Agency has selected the Solar Orbiter Mission as one of its next two missions to fly. Several members of the A&A group are Co-Investigators on Solar Orbiter instruments, in particular on the STIX X-ray imager. The group's involvement with Solar Orbiter and STIX continues a long history

of pioneering research in solar physics (dating back to the first Regius Chair in 1760) and solar X-rays in particular – a heritage which includes Co-I-ship on NASA's awardwinning RHESSI mission. With an expected launch date of 2017, the Solar Orbiter carries several instruments deep into the inner solar system to co-rotate with the Sun, imaging activity on its surface and sampling its magnetic field and solar wind.

Courtesy W. Thompson

ESA's Solar Orbiter mission

Courtesy Equinox Graphics

